Как я провел зиму!

Обзор воспроизводящих устройств с плоскими экранами

До настоящего времени в подавляющем большинстве серийно выпускаемых телевизоров в качестве устройств отображения цветной телевизионной информации использовали масочные кинескопы. Однако им присущи серьезные недостатки. Главный из них  значительная масса, громоздкость и сложность в изготовлении.

Конкурентами кинескопов можно назвать устройства отображения в виде плоских панелей. Основные принципы, заложенные в основу их функционирования, известны давно, и, как показала практика, плоские панели долгое время не обеспечивали должного качества изображения. Между тем, их стоимость весьма высока. В последние годы благодаря многочисленным исследованиям и совершенствованию технологий положение дел резко изменилось.

В настоящее время известно несколько типов плоских панелей: газоразрядные, жидкокристаллические, вакуумно-люминисцентные, полупроводниковые (на светодиодах). Они обладают преимуществами по сравнению с масочными кинескопами не только по ряду технических параметров, но и по возможностям серийного производства. В них используют более дешевые материалы (например, жидкие кристаллы изготавливают из отходов мясопереработки), сокращается применение дорогих редкоземельных люминофоров, не требуется дорогой высокоточный металлопрокат для масок, медный провод для отклоняющих систем, громоздкое и экологически вредное стекольное производство для изготовления колб. Срок службы панелей больше, чем у масочных кинескопов.

Но существенным недостатком плоских панелей, сдерживающим их применение в бытовой технике, по прежнему остается высокая стоимость самого процесса их изготовления.

С конца 80-х годов широкое распространение получили жидкокристаллические (ЖК) панели, используемые в качестве мониторов портативных компьютеров. К сожалению, с ростом диагонали экрана стоимость таких панелей резко возрастает. К недостаткам первых ЖК панелей следует отнести также их инерционность, нелинейность модуляционной характеристики и ограниченный угол для наблюдения.

Параллельно с жидкокристаллическими панелями получила бурное развитие технология газоразрядных панелей. Их разработка началась в начале 90-х годов. Японская фирма Fujitsu, начиная с 1993 года, выпускает газоразрядные панели с диагоналями 40 см и более. К работам подключились также фирмы Sony и Nec.

  1. Плазменные панели

Принцип действия аренда плазменных панелей москва (плазменной дисплейной панели PDP) осно­ван на свечении люминофоров экрана под действием ультрафиолето­вых лучей, возникающих при электрическом разряде в плазме (разре­женном газе).

Конструктивно плазменная панель представляет собой две стек­лянные пластины, на которые нанесены полупрозрачные электроды (шины) для коммутации строк (на лицевом стекле) и столбцов изоб­ражения (на заднем стекле, являющемся подложкой) (рис 5.1). На внутренней поверхности передней прозрачной стеклянной пластины напротив каждого подпикселя расположены два тонкопленочных электрода: электрод сканирования и электрод подсветки. На внешней поверхности задней стеклянной пластины поперек всех пикселов расположен электрод адресации. Таким образом, образуется прямоугольная матрица, ячейки которой находятся на пе­ресечении электродов строк и столбцов. На стекле–подложке сфор­мирован специальный профиль в виде стеклянных ребер, изолирую­щих соседние ячейки друг от друга. На внутренней поверхности стек­ла подложки нанесены чередующиеся полоски люминофоров первичных цветов RG, В, образующих триады. В процессе изготов­ления такой панели из внутреннего объема между стеклянными плас­тинами откачивается воздух, этот объем заполняется разреженным газом (неон, ксенон, гелий, аргон или их смесь), являющимся рабочим «телом» при работе, после чего панель герметизируют.

Рисунок 5.1 – Конструкция плазменной панели

Плазменная панель работает следующим образом. С помощью внешних устройств «развертки» на электроды строк и столбцов мат­рицы подаются управляющие напряжения. Под действием напряже­ния между инициированными строчной и столбцовой шинами в соот­ветствующей ячейке матрицы происходит электрический разряд в газе через образующуюся при этом плазму (ионизированный газ). Этот разряд вызывает мощное ультрафиолетовое излучение, которое за­ставляет светиться находящийся в данной ячейке люминофор. Так как существуют разделительные «барьеры» между соседними ячейка­ми, электрический разряд локализуется в пределах одной отдельно взятой и не оказывает воздействия на соседние ячейки. А чтобы еще «спой» ультрафиолет не вызвал свечения «чужого» люминофора, на боковые поверхности разделительных ребер наносят специальное по­глощающее ультрафиолет покрытие.

Работа плазменной панели состоит из трех этапов (рис 5.2):

  1. инициализация, в ходе которой происходит упорядочивание положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подается импульсинициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочивание расположения ионов газовой среды, на второй ступени — разряд в газе, а на третьей — завершение упорядочивания.

  2. адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подается положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.

  3. подсветка, в ходе которой на шину сканирования подается положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионовна каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, меняя полярность импульсов обеспечивается многократный разряд ячейки.

Один цикл «инициализация — адресация — подсветка» образует формирование одного подполя изображения. Складывая несколько подполей можно обеспечивать изображение заданной яркости и контраста. В стандартном исполнении каждый кадр плазменной панели формируется сложением восьми подполей.

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит емкостной высокочастотный разряд, что приводит к ультрафиолетовомуизлучению, которое вызывает свечение люминофора: красное, зелёное или синее (рис. 5.3).

Рисунок 5.2 – Иллюстрация этапов работы плазменной панели

Рисунок 5.3 – Иллюстрация работы одного подпикселя плазменной панели

Проведем анализ основных технических и потребительских характеристик плазменных панелей

Диагональ, разрешение

Диагонали плазменных панелей начинаются с 32-дюймов и заканчиваются на 103-х. Из всего этого диапазона, как уже было сказано выше, в России пока лучше всего продаются 42-дюймовые панели с разрешением 853×480 точек. Это разрешение называется EDTV (Extended Definition Television) и подразумевает под собой «телевидение повышенной чёткости». Такого телевизора будет достаточно для комфортного времяпрепровождения, поскольку в России пока не существует бесплатного телевидения высокой чёткости (High Definition TV — HDTV). Однако HDTV-телевизоры, как правило, технически более совершенны, лучше обрабатывают сигнал и даже способны «подтягивать» его до уровня HDTV. К тому же, в магазинах уже можно купить фильмы, записанные в формате HD DVD. Выбирая HDTV-телевизор, обратите внимание на формат поддерживаемого сигнала. Самый распространённый — 1080i, то есть, 1080 строк с чересстрочным чередованием. Чересстрочное чередование принято считать не очень хорошим, поскольку будут заметны зубчики по краям объектов, но этот недостаток нивелируется высоким разрешением. Поддержка более совершенного формата 1080p с прогрессивной развёрткой пока встречается только на достаточно дорогих телевизорах, начиная с девятого поколения. Существует также альтернативный формат 1080i — это 720p с меньшим разрешением, но зато с прогрессивной развёрткой. На глаз различие между двумя картинками найти будет сложно, так что при прочих равных 1080i предпочтительнее. Впрочем, большое количество телевизоров одновременно поддерживают и 720p, и 1080i.

Выбирая диагональ, в первую очередь имейте в виду – чем она больше, тем дальше от телевизора должен находиться наблюдатель (примерно на расстоянии 5 высот экрана). Так в случае 42-дюймовой панели наблюдатель должен быть удалён от неё на расстояние не менее трёх метров. В противном случае будет достаточно сильно заметна дискретность структуры изображения из-за относительно большого размера пикселя плазменной панели.

Соотношение сторон (формат изображения) Все плазменные телевизоры имеют панели с соотношением сторон 16:9. Стандартная телевизионная картинка 4:3 на таком экране будет смотреться нормально, просто неиспользуемая площадь экрана по бокам изображения будет залита чёрным или серым, если телевизор позволяет менять цвет заливки. Телевизор может иметь функции растяжения изображения на весь экран, но в результате этой операции, как правило, происходит незначительное искажение изображения. В формате 16:9 в России пока вещает только ограниченное количество тестовых цифровых каналов.. По умолчанию такое соотношение сторон используется только в HDTV. Яркость

Существуют две характеристики панели, связанные с яркостью, — это яркость панели и яркость всего телевизора. Яркость панели нельзя оценить на готовом продукте, потому что перед ней всегда стоит светофильтр. Яркость же телевизора — это наблюдаемая яркость экрана после прохождения света через фильтр. Фактическая яркость телевизора никогда не превышает половины яркости панели. Однако в характеристиках телевизора указывается изначальная яркость, которую вы никогда не увидите. Это первый маркетинговый трюк производителя.  Ещё одна особенность данных, указываемых в спецификациях, связана с методом их получения. В целях энергосбережения и защиты панели от перегрузки её яркость в расчёте на точку уменьшается пропорционально увеличению суммарной площади засветки. То есть если вы видите в характеристиках значение яркости 3000 кд/м2, знайте — она получается только при небольшой засветке, например, когда на чёрном фоне отображается несколько белых букв. Если инвертировать эту картинку, мы получим уже, например, 300 кд/м2. Контрастность

С этим показателем также связаны две характеристики: контрастность при отсутствии окружающего света и в присутствии. Значение, указываемое в большинстве спецификаций, — это контрастность, замеренная при отсутствии фонового освещения. Таким образом, в зависимости от освещения, контрастность может изменяться с 3000:1 до 100:1. Интерфейсные разъёмы

Подавляющее число плазменных телевизоров имеет, как минимум, следующие разъемы: SCART, VGA, S-Video, компонентный видеоинтерфейс, а также обычные аналоговые аудиовходы и выходы. Рассмотрим эти и другие разъёмы подробнее. Через SCART одновременно передаются аналоговый видеосигнал и стереозвук. Через HDMI можно передавать HD-сигнал в разрешении 1080p вместе с восьмиканальным звуком. Благодаря высокой пропускной способности и миниатюрности разъёма, интерфейс HDMI поддерживают уже многие видеокамеры и DVD-плееры. А компания Panasonic поставляет со своими PDP пульт с функцией HDAVI Control, позволяющей управлять не только телевизором, но и другой техникой, подключённой к нему через HDMI. VGA — это обычный компьютерный аналоговый разъём. Через него к PDP можно подключить компьютер. DVI-I — цифровой интерфейс для подключения всё того же компьютера. Однако встречается и другая техника, работающая через DVI-I. S-Video — чаще всего используется для подключения DVD-проигрывателей, игровых приставок и, в редких случаях, компьютера. Обеспечивает хорошее качество изображения. Компонентный видеоинтерфейс — интерфейс для передачи аналогового сигнала, когда каждая его составляющая идёт по отдельному кабелю. Благодаря этому компонентный сигнал — самый качественный их всех аналоговых. Для передачи звука используются аналогичные RCA-разъемы и кабели — каждый канал передается по своему проводу. Композитный видеоинтерфейс (на одном разъёме RCA) использует один кабель и, как результат, — возможна потеря цветности и чёткости изображения. Энергопотребление

Энергопотребление плазменного телевизора меняется в зависимости от отображаемой картинки. Уровень, указываемый в спецификации, отражает максимальное значение. Так, например, 42-х дюймовая плазменная панель при полностью белом экране будет потреблять 280 Вт, а при полностью чёрном — 160 Вт.

Основные достоинства и недостатки плазменных панелей

Достоинства

Во-первых, качество изображения плазменных дисплеев считается эталонным, хотя лишь совсем недавно была окончательно решена «проблема красного цвета», который в первых моделях больше походил на морковный. Кроме этого, плазменные панели выгодно отличаются от своих конкурентов высокой яркостью и контрастностью изображения: их яркость достигает 900 кд/м2 а контрастность — до 3000 : 1, тогда как у классических ЭЛТ-мониторов эти параметры составляют соответственно 350 кд/м2 и 200 : 1. Также необходимо отметить, что высокая четкость изображения PDP сохраняется на всей рабочей поверхности экрана. Во-вторых, плазменные панели имеют малое время отклика, что позволяет без проблем использовать PDP не только в качестве средств отображения информации, но и в качестве телевизоров и даже, при подключении к компьютеру, играть в современные динамичные игры. Важно отметить, что плазменные панели лишены такого существенного недостатка ЖК-мониторов, как значительное ухудшение качества изображения на экране при больших углах просмотра.  В-третьих, в плазменных панелях (впрочем, как и в жидкокристаллических) принципиально отсутствуют проблемы геометрических искажений изображения и сведения лучей, являющихся существенным недостатком ЭЛТ-мониторов.  В-четвертых, имея самую большую площадь экрана среди всех современных устройств отображения визуальной информации, плазменные панели исключительно компактны, особенно в толщину. Толщина типичной панели с размером экрана в один метр обычно не превышает 10-15 сантиметров, а масса составляет всего 35-40 килограммов.

В-пятых, плазменные панели достаточно надежны. Заявленный срок службы современных PDP в 60 тыс. ч предполагает, что за все это время ( примерно 6,7 лет непрерывной работы) яркость экрана уменьшится вдвое против начальной.  В-шестых, плазменные панели гораздо безопаснее телевизоров с кинескопом. Они не создают магнитных и электрических полей, которые оказывают вредное влияние на человека и, кроме этого, не создают такое неудобство, как постоянное скопление пыли на поверхности экрана вследствие его электризации.  В-седьмых, PDP и сами практически не подвержены воздействию внешних магнитных и электрических полей, что позволяет без проблем использовать их в составе «домашнего кинотеатра» совместно с мощными высококачественными акустическими системами, далеко не все из которых имеют экранированные головки громкоговорителей.  Недостатки

В первую очередь, это относительно низкая по сравнению с ЖК-панелями разрешающая способность изображения, обусловленная большим размером элемента изображения. Но, учитывая тот факт, что оптимальное расстояние от монитора до зрителя должно быть порядка 5 его высот, то понятно, что наблюдаемая на маленьком расстоянии зернистость изображения просто исчезает на большом расстоянии.

Также довольно существенным недостатком плазменной панели является высокая потребляемая мощность, быстро возрастающая при увеличении диагонали панели. Этот факт приводит не только к увеличению эксплуатационных затрат, но высокое энергопотребление серьезно ограничивает круг применения PDP, к примеру, делает невозможным использование таких мониторов, например, в портативных компьютерах. Но даже если решить проблему с источником питания, изготавливать плазменные матрицы с диагональю менее тридцати дюймов все равно пока еще не выгодно экономически.

  1. Жидкокристаллические панели

Жидкокристаллические панели (ЖК панели)  это светоклапанное устройство, модулирующее световой поток от внешнего источника света. В жидкокристаллических панелях (ЖКпанелях) используется способность аморфного вещества изме­нять свои оптические свойства в электрическом поле. Существуют ЖКпанели просветного и отражательного типов. С тыльной стороны ЖК–панель просветного типа освещается равномерным световым потоком. Под действием напряжения между инициированными строчной и столбцовой шинами в соответствую­щей ячейке матрицы изменяется оптическая прозрачность амфорного вещества. Световой поток, проходя через ЖК–матрицу с тремя типа­ми цветовых ячеек RGBмодулируется по яркости и по цвету. Таким образом, на экране ЖКпанели синтезируется цветное изображение.

В настоящее время наибольшее распространение ЖК–панели по­лучили в компьютерной технике в качестве мониторов, а также телевизорах. Жидкокристаллические панели в десятки раз экономичнее плазменных. К достоинствам ЖК–панелей следует отнести также высокую технологичность и относительно низкую сто­имость.

Принцип работы жидкокристаллических матриц основывается на свойстве молекул жидкокристаллического вещества менять пространственную ориентацию под воздействием электрического поля и оказывать поляризующий эффект на световые лучи.В многослойной структуре матрицы, представляющей собой прямоугольный массив множества отдельно управляемых элементов (пикселов), слой жидких кристаллов помещается между стеклянными пластинами, на поверхности которых нанесены бороздки. Благодаря им, во всех элементах матрицы удается сориентировать молекулы идентичным образом, причем, вследствие взаимно перпендикулярного расположения бороздок двух пластин, ориентация молекул меняется по мере удаления от одной из них и приближения к другой на 90 градусов

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *